Search results for "Ridge waveguides"
showing 4 items of 4 documents
Performance analysis and comparison of symmetrical and asymmetrical configurations of evanescent mode ridge waveguide filters
2009
[1] In this paper, the trade-offs between out-of-band performance, filter length, power-handling capability, and insertion loss of both symmetrical and asymmetrical evanescent mode ridge rectangular waveguide filters are investigated. As a result, clear design methodologies for optimizing such performances are proposed. The developed methodologies are then applied to design several evanescent mode filters, and a complete performance analysis of the symmetrical and asymmetrical structures is performed. From the performance analysis results, the designer can choose the more appropriate filter topology and design strategy to satisfy the prescribed specifications.
Efficient Analysis and Design Strategies for Evanescent Mode Ridge Waveguide Filters
2006
In this paper, a research on the compromises arisen in the design of traditional evanescent mode waveguide filters is carried out. As a result, clear design methodologies for optimizing length, losses, power handling and spurious-free out-of-band response are developed. In addition, an efficient and very accurate modal analysis tool for this kind of structures is presented. Several filters have been designed according to the different strategies proposed, and a prototype has been finally manufactured. Measurements and filter dimensions validate the proposed design procedures.
Corrections to “Multipactor Susceptibility Charts for Ridge and Multi-Ridge Waveguides” [Dec 12 3601-3607]
2014
The authors have detected an error in Section IV-A in the above paper (ibid., vol. 59, no. 12, pp. 3601-3607, Dec. 2012). The analyzed rectangular waveguide in the actual version of the article is the WR137, instead of the WR90. As a consequence, the corrections presented here have to be implemented.
Coupling evanescently low loss Silicon-on-insulator ridge waveguides including high Q nanocavities for light control
2011
Summary form only given. In this work, we propose an innovative way to achieve an air-slotted nanocavities by coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities exhibiting an ultrasmall modal volume V. We first show that coupling two WGs allows us to achieve a field confinement within the air slot as low as lambda/30 while preserving a high group index of the guided modes. Then we demonstrate that merging such coupled WGs with state-of-the-art high-Q/small V nanocavities is a robust way to achieve a single compact (1 µm × 3 µm) air-slotted resonator on substrate. Finally, we extend the concept to multiple air-slotted resonator syste…